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ABSTRACT

Let 7 = {f(-,08): 6 ¢ J}, J an interval, be a family of univariate
probability densities (wrt Lebesgue measure) on an interval I. First, a
necessary and sufficient condition is proved for ¢ to be identifiable
whenever g C CO(]), the class of continuous functions on J vanishing
at « . If f_ is a G-mixture of the densities in ¢ with G unknown,

G

an estimator Gn based on f_ and B = {f(x,-): xe I} is provided such

G

that G_ —% 5> G under certain conditions on ¢ . If Xpp o+, X are iid

random variables from fG’ an estimator én is provided such that
Gn(Xl, AT Xn’ ) 25 G(-) almost surely under certain conditions on &
and G . Furthermore, it is shown that IfG (%) ~ fG(x)| - 0 a.s. and
in LZ with rates like O(n_c) (c > 0) underncertain conditions on the

~ ~
density estimator fG(x) involved in the definition of Gn . The conditions
of various theorems are verified in the case of location parameter and scale

parameter families of densities.
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ESTIMATION OF A MIXING DISTRIBUTION FUNCTION

J. R. Blum and V. Susarla

1. Introduction and summary. Let f be a Borel measurable function from

I X] to (0,%) such that f f(x, 8)dx =1 for each 6 in ] where I and

] are intervals contained ir{ R=(-w,©) and B and Z be the collections
of sections of f with the first coordinate (in I) and the second coordinate
(in J) fixed respectively. For a probability distribution function G on 1

let

(1. 1) f5(%) = fI f(x, 0)dG(0), x in 1.

We provide an equivalent condition for the identifiability of ¢ (for
the definition of identifiability, see (Al)) in Section 2. In Section 3, we
consider the problem of estimating G in terms of fG and A . To obtain
an estimate Gn of G, we solve a system of equalities and inequalities

w

and then show that Gn converges weakly to ( >) G under some con-

ditions on # . If G and fG are unknown, but iid random variables

Xl’ Sy Xn, ... are observable (this is the standard empirical Bayes situation

of Robbins [4] described in Section 4), then we construct (in Section 4)
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estimates én(xl, .+, X, ) which —W ., G(-) almost surely (a.s.)
under some conditions on A . It is then immediate that f of(x, e)dGn
- f of(x, 0) dG(6) a.s. whenever 6f(x,0) e C(]) . Purthelmore, it is
shozvn that our method of construction of Gn provides rates for a. s. and
L2 convergences of fé (x) - fG(x) to zero for each x under some
additional conditions onn A . In Section 5, all the above results are
shown to hold for location and scale parameter families of Lebesgue
densities under rather weak conditions.

The results of Section 3 are not only of mathematical interest, but
also provide an intuitive basis for the results of Section 4. In Sections
4 and 5, we take I =] =R as other cases can be treated with obvious
modifications of the method presented here. Throughout, G is assumed
to be a distribution function with support in J .. The estimator and its
properties are compared with three other estimators for G in Section 6.

In Section 4, we discuss the application of the main result of this paper

to empirical Bayes estimation problems.

2. Identifiability. For the distribution function G in (l.1) to be estimable

in terms of fG and A, it is obvious that the following condition should
be satisfied.

(Al) fG(x) = fH(x) forall x in Ie H-G=0 .

This condition is called the Identifiability (of #) condition. (For example,

see Teicher [7].)
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With CO(I) denoting the Banach space of continuous functions on

the interval ] which vanish at ® and normed by

(2.1 lgll = sup{lanl|y in 7} ,

we obtain

Theorem 2.1. Let B C CO(]) . Then (Al) holds if and only if & generates

CO(I) in the supremum norm (2.1).

Proof. Let (Al) hold. Let B be the closed subspace generated by 5 .

If B# CO(I), then there exists a g in CO(I) - B and a bounded linear
functional & on CO(I) such that &(g) =1 and <I>(f*) =0 “for f* in. B..
Also, by the Riesz representation theorem, there exist non-decreasing

non-negative functions K1 and K‘2 of bounded variations on J such that

3 (f) = f f(y) d(K - K,)(y) for f in C () .

¥
Since @(f)=0 for f in B, it follows that [ f(x, 0)dK (0) =
f f(x, e)dKZ(e) for all x in I which, by (Al), iImplies that Kl - K2 =
cIonstant. But then, this implies that @ (g) =f G(Y)d(KI - KZ)(y) =0

J

which is a contradiction since & (g) = 1. Hence @ generates CO(I) :
Conversely, let B generate CO(I) and (l.1) hold at G and H.

We show that G - H=0. By assumption

(2.2) [ fx, 8) dG(e) = [ f(x, 0) dH(6) for all x in I
J J

Since A generates CO(I) in the supremum norm, (2.2) can be extended

to




(2. 3) [ 9(6) dG(0) = [ g(0) dH(6) for all g in Co -
J ]

Since @ (g) = f g(6) dG(68) is a bounded linear functional on CO(I)
whenever G 1sIof bounded variation on J, the uniqueness part of the
Riesz representation theorem and (2. 3) show that G - H = constant. This
completes the proof of the thecrem since G and H are distribution

functions on J.

3. Construction of an estimator of G in (l.1). In this section, we de-

fine an estimator Gn ((3.6)) of G in terms of fG and # . We con-
sider in detail the case I =] =R only and point out the required changes
if T or (or and) J is an (are) interval(s). Throughout this section, the
integration is over (-9,%), and the limits are as n - © unless other-

wise stated.

For a fixed partition

0 (=-oo)<9n O(=-n)<6n e

n, -1 s 5l

(3.1)

en, m(n)(= )& en, m(n)+1 e
with
(3.2) 6n=max{en’j-6n’j_llj=1,...,m(n)}-»0
and for x in R, and for ¢ = -1,...,m(n), let

= < <

(3. 3) Mn’l(x) sup{f(x, 0)| °n,z <6< 9n,1+1} ;

-4 -




and

Lt )
(3.4) m (%) = 1nf‘f(x,0)|0n,l_<_0§On’£+1;
t = el 2
Le P, {pn’ o . pn’ m(n)} be such that
(" (s m(n)
> =
(i) pn,l >0 and Lig=_1Pn, 15
& m(n)
¥ >
(3.5) 4 (ii) Zl:-l pn,! Mn,l(x) _fG(x) and
ain YW p m (%)< £ ox)
% CETEE T e e
where (ii) and (iii) hold for x in {Gn, 0 Gn, m(n)}

Let Pn = {pnl P is a solution of (3.5)} . That Pn is not empty follows

since one such solution is given by P =f kL dG for £ .= <L ...,mn) .
b
$)
: : n, f
For any pn in Pn’ define
('
<
0 s en, 0
.6 = + 0 <y<®o
(3.6) C;'n(Y) ﬁ pn, -1 pn,O n,O—y gl
E! P  <y<® £ =1,...,mn
\ &j=-1 "n, 1 n, = n, ¢+’ 4 ¢

Clearly Gn is a discrete distribution function on R .

Note. The solution of (3. 5) is a simple linear programming problem and
there are efficient computational aigorithms availabe for the solution of
such inequalities. (3.5) can be solved theoretically for pn without the

assumption that x is in {en }, but such a solution might

]
905 ¢+, Ny m(n)

be difficult to obtain.




The result leading to Gn —Ws G is

Theorem 3.1. Let f(x,-)e (20(R) s

(A2) lim sup lf(x, 0) - f(x', 0)| =0, and
X'-=+x 0

(A3) foreach ¢ >0 3 6,6'>05|x'-x|<6 and
lo' - ol < 6= lf(x',0' - f(x',0)] <&

Then [ fix, 0)dG _(0) — [ f(x, 0)dG(e) = £ (%)

Proof. Without loss of generality, let |x| < n . By the choice of the

partition (3.1) and (3. 2), there exists a sequence {erl j(n)} such that
b

a - X . We also observe that f(x,-) e C_(R) and (A2) imply that
n, j(n) 0

(3.7) foreach ¢>0386, M>053 [x'-x| <5 |o|l>M> f(x',0)<e¢

By the definitions of p_ and G_ given.in (3.4) and (3. 6) respectively
n n 4

m(n)
Zl:-l pn, £ mn, l(en, j(n)) £ ff(en, j(n)’ e)dG'n(e)

m(n)
£=-1 pn,! Mn,!(en,j(n))
Now observe that 0 ) Dn = the difference between the extreme sides of
(3. 8))
m(n)
= Lyg=-1 pn,I{Mn,l(en,j(n)) g mn,l(en,j(n))}
< sup{lf(x', 0) - fx', o) | Ix-x'| <5, lo-0'] < 6)

+ sup{f(x', 0)

| x'-x] <6 lol >n}

-6~




by the choice of the partition {¢ and the seguence

: hary ]
n, -’ *“n, m(n)+1’

{0 } . This last expression (and hence D)0 due to (A3) and

(3.7). Hence, since the lhs of (3.8) < f_(6 ) < rhs of (3. 8) due to

G m, J(n)y ~

(ii) and (iii) of (3. 5),

(3.9) f f(en,j(n), 0)dG (6) - fG(en,j(n)) -~0.

x . For the same reason,

But f ) — fG(x) by (A2) since ©

G(en, j(n) n, j(n) =

f f(On, j(ny’ E))dGn - f f(x, e)dGn(e) - 0 . This completes the proof in view

of (3.9).

Corollary 3.1. Let 5 C CO(R), (Al); (A2) and (A3) hold for each x in

R. Then Gn—“—'—-> G . If, in addition, 0f(x, 6) ¢ C(R), then

[ of(x, 6)dG () [ of(x, 8) dG(0) .
Proof. By Theorem 3.1,

(3.100 [ f(x, 6) dG_(6) ~ [ fx, 8) dG(8) for each x in R.

Since B C CO(R) and (Al) holds, ~” generates CO(R) in the supremum norm
(2.1) by Theorem 2.1. Therefore, (3.10) can be extended to fg(e)dGn(e)

=* f g(e) dG(e) for each g in CO(R) which is equivalent to the first

result. The second result is a consequence of the first result since

0f(x, 8) € C(R) .

Remark 3.1. If J =[a,b] and T = [c,d] with -» <a,b,c, and d <,

then take en =a<e Ko % = b with 6n !

, -1 n, 0 en, m(n) < en, m(n) +1

= max{E)n -0 -0 | j= 0,1,...,m(n)+1} - 0 and solve (3. 5) at

7j n;j n)j‘l




} where {x,%.,...,

the nth stage when x is in {xl,xz,. P %20

e Xm(n) +1

xm(n)+l} is dense in 1.

4. Estimation of G when fG is unknown. In this section, assume

that the distribution function G and fG are unknown, I =]=R and that

X Xn are iid random variables with common density f_, . We ex-

G
..,X,+)) suchmat & —¥—s G almost surely
T n

P
hibit Gn(-) (:Gn(xl"

(a.s.). An application of and motivation for the results of this section
is given in the lengthy Remark 4. 2.

Let fG(x) (= fG(X o Xn’ x)) be an estimator of fG(x) such that

P

(A4) H?G(-) . fG(-)” -0 a.s.

where || || denotes the sup norm. For each fixed n, let f)n be the

class of solutions obtained for (3. 5) when fG in (ii) and (iii) is replaced

by ?G - ¢ and ?G + ¢ respectively where g(= en) is the smallest

positive number for which the class 'Pn is not empty. This method of
choosing ﬁn does not require ¢ to be known in advance, i;n is well-
defined for each n, and the method involves a linear programming problem.
Whenever the sample sequence is in the a.s. event A guaranteed to
exist by (A4), the ¢g(= en) corresponding to that sample sequence at
stage n converges to zero for the following reason. Let en =2 ”?G(xl,

~

cey Xy ) = ES0 )l . Then er: -+ 0 by assumption. Moreover, P is

£ et il < g
not empty for large n since "fG(xl’ ,xn, ) fG( )" en implies

-8




0
n, 4+l

th( Iﬁ - [A PR D wi 5 = - -

at P (pn’ T » By m(n)}’ with P g f dG for ¢ | SEPDCRPE .|
! n, !

is a solution belonging to pn . Since e(= en) < e;‘;, e - 0. Define

Gn() (= Gn (Xlx - u ')Xn’ ')) by

4. 2 = f -5 i P P =
(4.1) Gn(y) Gn(y) of (3.6) with pn’ ‘ replaced by pn, ' where pn
{pn_l,...,p } is in P

With the above notation, we obtain the following two theorems. The

n, m(n)

first theorem is an analogue of Theorem 3.1 for én . The second theorem

provides rates of convergence for fé (%) - fG(x) -0 a.s. and - 0 in LZ .
n

Theorem 4.1. Let (Al) and (A4) and for each x in R, the conditions of
Theorem 3.1 holds. Then én —X_ > G a.s. If, in addition, 6f(x,6) ¢ C(R),

then [ o0f(x, 0)dG_(0) = [ 0f(x, 6) dG(0) a. s.

Proof. Let the sample sequence {xl, RS SREER } be a fixed point in
the a.s. event A guaranteed to exist by (A4). We show that én(xl’ N erely
X, ) =2 G(-) .

Unless otherwise stated, let x be fixed. Without loss of generality,
let n> lxl and let €, be as in the discussion preceding (4.1) and let

e;‘ L J% W) s fG(. )|| . As in the proof of Theorem 3.1, let

x . By the construction of Bn and Gn y

O)dGn(G) =

o>

o, a1 0, gm? £ €O, jiay

(4.2) .
ymn)

n,j(n))i Lf=-1 n,l(en,j(n))

-




The difference between the extreme sides of (4.2) goes to zero due to
(A2) and (A3) as in the proof of Theorem 3. 1. Also, by the construction

preceding (4.1), and the assumption on ?G’ the lhs of (4. 2)

A 3
| 0 - 2 f ( - - £ c d th h~ f 4.2
- G( n, j(n)) 8n - G( )n, j(n)) 8n tn i B R ol 4d:c)
< . darge . c < VI' = i
< fG(On, j(n)) te + €, for large n Now recall that 0 sy < €, 0
2nce d 3 - lim f_ (€ = f i A B lies
Hence f f(on,”n), 0)dG (0) ~ lim G()n’j(n)) f(x) since (A2) implie

that f is continuous at x and 6 -
G n, j(n)

[ f0, j(ny V9GO - Fofin, 0)dG (0) = 0 . Therefore,

x . For the same reasons,

4.3) [f(x, O)dénm) ~ £,(0 = [ £(x,0) dG(9) for all x in R

Now the conditions B C CO(R) and (Al) imply (as in the proofs of
Theorem 3.1 and Corollary 3.1) that (4. 3) can be extended to fg(O)dén(O)

- f g(08)dG(e) for all g in CO(R) which is eguivalent to @n(xl, N oo

Xn’ -y ~A, G(-) . Since {xl, eiss Xn’ ...} is an arbitrary point in A

with P(A) = 1, the proof of the first part of the theorem is complete. The
second part follows from the first part since 0f(x, 8) ¢ C(R) .

One advantage of our method of construction of én is that the rate
results of ?G can be used to obtain the corresponding rate results for

fé as the following theorem shows. Recall that én is defined by (3. 2).
n

Theorem 4. 2. Let the conditions of Theorem 4.1 hold and let (A4) hold
with rate O(Qn) with @, (S ORTTE

(A5) sup sup {|f(x, 0) - f(x', o)l } < Y,
Ix' -x]< 61’1 0

=10:=




with ynLOas 6n10

-1
, then [max {an, ¥ hd Ifén(x) - fG(x)I = 0(l)

a.s. (a.s. setis independent of x, but 0(l) could depend on x) .

Additionally, if

A 2 2
(R6) sup{E(fG(x‘) - £5(x)) Ix' - x| < bn} = 0(B )

’

2 2 2 5-=1 2
then [max{an, B yn}] E[(fén(x) - fG(x) ] = 0(1) . (Again, 0(l) could

depend on X .)
Note. (A5) is actually (A2) with a rate of convergence property.

Proof. [ be such that |[x - 6 <SOSRy ih 4.1
roo et 4 n,](n)} su | n,j(n)l s y Theorem .
én —* 5 G a.s. The results now follow from the following set of in-

equalitiess:

(4. 4) lfén(x) X fG(x)| <lez 8, ym) fG(en,j(n))I +

{3

+ lfg ) - ( G'%n, j(n)

n

'j(n))l + IfG(x) u f

£ 8 B! = Tyl ¥ 2y

where the second inequality follows from (A5). Now observe that

. y - f
lfGn(en,j(n)) fG( n, J(n))I < It Gn(en J'(n)) G(On,j(n)|
(4.5) + lfG(en,”n)) - £33 jn) gl <2e + lfc(en j(n)
" fG(en’j(n)H
=)l




where the last inequality follows from the construction of én (for ex-

ample, see the argument following (4.2)). Now the first result follows

from (4.4), (4.5) and (A4) while the second result follows from (4.4),

(4.5) and (A6).

Remark 4.1. If I and/or J are finite intervals, then apply the modi-

E fications suggested in Remark 3. 1.

Remark 4 2. Here, we discuss an application of Theorem 4.1 to the
standard empirical Bayes decision problem of Robbins [4]. In an empirical
Bayes decision problem, there is a sequence of iid vectors {(en, Xn)}
where en i G, an unknown distribution and given 9n = 0, Xn ~ f(-, 0)

(e @) . Xn is observable while en is not. The empirical Bayes problem
involves exhibiting {tn(Xl, - o ,Xn)} such that the Bayes risk of using

tn in deciding about en less the minimum Bayes risk of deciding (using
Xn) about on converges to zero, hopefully with a rate. Robbins [4]

named such rules as asymptotically optimal empirical Bayes rules (a.o.e.B).
In this situation, one can use Theorem 4.1 as follows: Use Xl’ Wi

n

to estimate G by é as in Theorem 4.2. Then take t SHE AL
n n+l n+l 1 ?

Xn+l) as the Bayes rule of deciding (using Xn+l) about en+1 when the
prior distribution is )\nfb + (l-)\n)én where & is the standard normal
distribution function and 0< \,+ 0 as nt ». Sucharule {tn} cannot
only be shown to be a.o.e.B., but also componentwise admissible under

fairly general conditions on 7, G and the loss function involved in the

definition of the Bayes risk. For example in the problem of empirical |

wl2 =




Bayes Squared error loss estimation of 0, the above method and the
dominated convergence theorem provide a. o, e. B. estimators which are
component admissible (with 6 restricted to [a,b]) provided G is in
the class of all distributions with support in [a,b], -» <a<b <= ,
The compactness of the support of G is not an unrealisitic assumption.
If the prior distribution does not have a compact support, the asymptotic
optimality of the above procedure can be obtained by appealing to an un-
published lemma of Le Cam and Scheffe's theorem. All these details,
which are too long, will appear elsewhere. Before closing, we note that
one has to use both parts of Theorem 4.1 namely, the convergence of
fan to f, and thatof [of(-,0) dén to [ef(-,6) dG to obtain the
above empirical Bayes results.

To obtain rate of convergence results in the above empirical Bayes
estimation problem, we make the following change. Instead of solving
the equations as described in the paragraph preceding (4. 1), solve the

equations (3. 5) with f_ in (ii) and (iii) replaced by ?G_ n and fG + 1

G

respectively along with the following equations:

i ity i < > h -
(iv) Wik sup{of(x, 0) en’l <6< en’Hl} >hg(x) - n
v m(n) : ‘
(v) L= Py inf{of(x, OHli8, 20 en,“l} < RG(x) +n
where ﬁG(-) is an estimator of hG(-) = fef(- ,0)dG and n is the smallest

positive number for which the above five equations (i) through (v) can be

solved simultaneously. Such a solution, as in Theorem 4.2, will lead to

«13e




 a —_——————

A ~
simultaneous rates for the mean square convergences of fG and hG to

fG and hG respectively. In turn, these mean square convergences re-

sults can be applied to obtain rates in the abcve empirical Bayes esti-

mation problem along with componentwise admissibility since the function
to be estimated is simply hG(- )/fG(-) based on Xl, e ’Xn This method

of obtaining componentwise admissible procedures has been used in a

nonparametric context in Susarla and Phadia [6].

5. Examples. We consider two examples, one involving a location
parameter family of densities on I = R (-%, ) and the other involving
a scale parameter family of densities on I = [0,%) . All densities are
wrt Lebesgue measure on the real line or on [0,%) .

To consider the location parameter case, assume that

(5.1) h is a continuous density with h(x) - 0 as |xl - 00

If
(5.2) f(x,0) = h(x - 8), -0<86, x<o ,

then we have |

Theorem 5.1. If f is defined via (5.2) and satisfies (Al), then Gn of

(3.6) A If, in addition,

(5. 3) sup {|h'(t)]| te R} <2
2 £ -1 ¢n |
(5.4) fot0 = (ma)™ ) ) kx - X)/a) g
-l4-




where X, ...,X areiid f.(f,(x) = [ h(x - 0) dG(0)), k is the standard
normal density and az = n-l, then én of (4.1) e G a8, provided
e of (Ad) = n"® with 0<4c<l. If 6§ _=0(n™Y) with y>1, then

-C Z
|fén(x) ~ fG(x)| = 0(n ) a.s. Moreover, E[(fén(x) = fG(x)) =

O(n-mm{Zc,l-Zc}) ;

Proof.  The first part of the theorem follows from Corollary 3.1 upon ob-

serving that (5.1) implies the conditions (A2) and (A3) and that A C CO(R) ’
For the second result, observe that (5.1) and (5. 3), respectively,

imply that f__ and fé are bounded. Therefore Corollary 2.6 with r = 0

G
of Schuster [5] obtains that

cCya
n ||fG-fG||—>0 a. S

where || H stands for the supremum norm and. 0 < 4c < 1. Thus (A4)
also holds with B ® n-c . Now Theorem 4.1 obtains the result én — . G
a. s.

The third part of the theorem follows since
sup sup {|f(x, 0) - f(x', 0)| } < 6n||h' I
|x'-x|< 6n €]

implying (A5) with Y = 6n =n"Y. To obtain the L2 convergence result,

-min{2c,1-2c}

we verify (A6) with pi =1 as follows:

Z A A 2
(5.5)  E[(F(x) - £, (x)7] = var(f(x) + (E[T S(x)] - f5(x")

By the definition of ?G and Lemma 2. 3 of Schuster [5], IE[?G(X')] -

fG(x')l <c,a_for some constant c and since k is bounded by unity

1l n 1’

-15-




and since X X = are iid, var(?G(x')) < (nai)'l . Hence, since 1

NERRY
-C -min{2c, l-Zc})

a =n (5.5) = 0(n

" ’ This verifies (A6) since 0 < 4c <1

and so the last result follows.

For considering the scale parameter case, assume that h is a

continuous density on [0,%) with

(i) sup{yh(y)l y >n} =0, sup{/h(v)||y>0}<
(5. 6) (i) sup{ylh'(y)llyzo}<ao and

(iii) SUP{yzlh'(y)l'y30}<°°
If
(5.7) f(x, 6) = 6h(x0) for x,6 >0 ,

then we have the following theorem whose proof is omitted since it is

similar to that of Theorem 5. 1.

Theorem 5.2. If f is defined via (5.7) and satisfies (Al), then Gn of

(3.6) %= G . If, in addition,

(5. 8) ¥ 6% dG(e) <
o0

and f . is defined by (5.4) where X, are iid fG(=f 6h(x0)dG(e)), then
0

G )
én of (4.1) —¥—> G a.s. provided g, of (A5) = n~€ with 0<4c<1.

If 6n = O(n_Y) with y >1 then |fé~ (x) - fG(X)I = O(n-c) a.s. Moreover

E[(fa fo (X 2, _ 0 —mln{Zc,l-'ch} ‘
(Gn(x)' (i )) ]— (n ). j

Remark 5.1. Theorem 5.1 includes the family of normal densities indexed

by the mean and with known variance while Theorem 5. 2 includes the family

-16 -




of scale parameter exponential distributions with the second moment of

the mixing distribution finite.

Remark 5.2. The results of this paper can be extended when both the
arguments x and 6 are vectors and can be applied to mixtures of dis-
crete probability distributions with appropriate changes. It is well-
known that the family of binomial distributions {B(n, ol o <p< 1} is
not identifiable. That this is the case can be readily seen from Theorem
2.1 since the class of polynomials of degree at most n does not generate

Col0,1] .

6. Some other estimators and comparison with our estimator. We briefly

describe three methods of estimation of G and compare their results with
those presented here. In the method by Deely and Kruse [2], the finite
interval A (on which G is assumed to have support) is partioned by the
poinks = X, o Ann so that there is a sequence {jn} of classes of

In

distributions such that the support of each distribution in jn is in

{xln, s

sequence {Gn} with Gn in Jn and Gn—L G . Then their method

gl
and Fy(-) = [F(-, 0)dH

o Xnn} and for every G with support in A, there exists a

chooses a Gn in ﬁn which minimizes the sup distance ” Fn =N

n

e =Y
where H is in jn’ nFn( ) Lj=1 I[in']

where F(-,0) is a distribution function for each 6 . They point out that
their method involves finding an optimal strategy in a game with a payoff

.y A__ . They point out that A

matrix which depends on F_, and \
n nn

In’"*

can be taken to be R. Choi [l] uses the Wolfowitz distance function

=]7=




d(é, G) = f (é(x) - G(x))2 dé(x) and in the words of Deely and Kruse [2],
the computational feasibility of Choi's method is not clearly established.
Moreover, Choi's [1] method needs the solution of a dynamic programming
problem, and considers only finite mixtures. Meeden [3] constructs a
probability distribution on %, the class of all probability distributions

on [0, ©) and then show that the Bayes estimate based on the first n

observations corresponding to the constructed prior converges ——L to

the true element G0 in % . Again the solution of finding estimates by
Meeden's [3] method appears as hard as we have in the paper. Our
estimators have the simplicity that they need only a linear programming
computation (see the note following (3. 6)), have some distance properties
(Theorem 4. 2), and will give componentwise admissible empirical Bayes
estimators with and without rates with a small amount of extra work if

the support of the prior is in a compact set. It is not clear how one can
recover rate results for the density ? and ﬁ from the weak convergence

G G

results of the above three authors.




(1]

(2]

(3]

(4]

(5]
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